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Abstract

Latent semantic analysis (LSA) is a method for information retrieval and processing
which is based upon the singular value decomposition. It has a geometric interpretation
in which objects (e.g. documents and keywords) are placed in a low-dimensional geo-
metric space. In this paper, we derive an alternative algebraic/geometric method for
placing objects in space to facilitate information analysis. We show that our method
is closely related to LSA, and essentially equivalent for particular choices of scaling pa-
rameters. We then show that our approach supports a number of generalizations and
extensions that existing LSA approaches cannot handle.

1 Introduction

Latent semantic analysis (LSA) is a well–known tool for information retrieval and analysis.
The canonical example of LSA begins with a term–document matrix in which matrix rows
correspond to key-words or terms, and matrix columns are documents. A nonzero value in
the matrix means that the corresponding document contains the corresponding term. This
vector space model of information is due to Salton [18].

Instead of working directly with this matrix, LSA replaces it with a low rank approx-
imation using the singular value decomposition [9]. A variety of interpretations of LSA
have been proposed. It is a noise reduction technique in which only the most significant
parts of the term–document matrix are retained. Alternatively, it is a method for mapping
terms and documents into geometric spaces, after which geometric algorithms can facilitate
analysis.

The purpose of this paper is to derive a novel algebraic algorithm for placing terms
and documents in space, which we call Fiedler retrieval for reasons that will become clear.
Whereas traditional LSA is motivated by a matrix approximation argument, our alter-
native follows from a geometric optimization problem. We show that Fiedler retrieval is
algebraically very closely related to LSA. Besides providing a fresh perspective on LSA, we
show that our approach allows for novel generalizations and extensions that are not possible
with traditional approaches. For instance, our methodology supports queries that involve
both terms and documents, e.g. “return documents with these terms and similar to these
documents”. As another example, unlike existing LSA techniques, our approach allows

∗This work was supported by the LDRD program at Sandia National Laboratories. Sandia is a multi-
program laboratory operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. DOE under
contract number DE-AC-94AL85000.

†Discrete Algorithms & Math Dept., Sandia National Labs. Email: bah@sandia.gov

1



for the consideration of term–term and document–document similarities in generating the
geometric embedding. The former might come from a thesaurus or multilingual dictionary,
while the latter could be provided by co–citation or link analysis.

In §2 we review the intuition and mathematics underlying traditional LSA. In §3 we
derive Fiedler retrieval by motivating and then solving a simple geometric optimization
problem. In §4 we discuss the algebraic relationship between LSA and Fiedler retrieval.
Finally, in §5, we discuss some of the benefits of our alternative derivation, including some
ideas for extending LSA in new ways.

As we discuss in §3, the geometric problem we use to motivate our approach reduces
to the calculation of eigenvectors of the Laplacian matrix of a graph. Laplacian eigenvec-
tors have been used in a wide range of applications in combinatorial optimization including
graph partitioning [13], clustering [10], and linear arrangement [14]. In many applications,
only the eigenvector corresponding to the smallest non–zero eigenvalue is of interest. But
several applications have involved the use of multiple eigenvectors [1, 3, 10], and our ap-
proach will too. For some of the development in this paper, we will be interested in the
Laplacian eigenvectors of bipartite graphs. The resulting matrix has a natural 2× 2 block
structure. Others have used Laplacian eigenvectors of bipartite graphs e.g. Berry, et al. for
reordering term/document matrices [8], Dhillon [10] and Zha, et al. [21] for data clustering,
and Newton, et al. for graph drawing [17]. But to our knowledge, the connection to LSA
described in this paper is new. In a paper similar in spirit to this one, Bartell, et al. have
shown that LSA is equivalent to a special case of a different geometric optimization problem
known as multidimensional scaling [2].

2 Latent Semantic Analysis

In this section we briefly sketch the fundamental operations in latent semantic analysis (also
known as latent semantic indexing). We follow the traditional derivation in which LSA is
motivated by an optimal matrix approximation. More comprehensive presentations can be
found in some of the citations e.g. [9, 6, 4, 5].

The canonical example of LSA begins with a t× d term–document matrix A. Each row
of A is associated with a keyword or term, and each column is a document. A matrix entry
A(i, j) is a non-negative value which encodes the importance of the term i in the document
j. A toy example of a term–document matrix is depicted in Fig. 1. There is an extensive
literature on methods for generating such a matrix from a corpus of documents, but the
construction process is beyond the scope of the current paper. Often, the term–document
matrix is scaled to achieve some attractive normalization property, or to weight some terms
or documents more heavily than others. Thus, we will consider the more general scaled
term–document matrix B = DtADd, where Dt and Dd are non-negative diagonal matrices
of size d× d and t× t respectively.

In this vector space model of information, a document is described as a (weighted) vector
of terms of which it is comprised. Two documents are similar if the inner product of their
vectors is large. Thus, the matrix BT B describes the set of inter-document similarities. A
query q is also a (weighted) vector of terms. The answer to a query is a set of documents that
are similar to it, e.g. documents whose vectors have large inner-products with the query
vector, that is large values in BT q. (Most commonly, similarity is measured in angular
distance, i.e. as a direction cosine between the two vectors, which is just a normalized

2



Documents

Terms

 2 4
3 3

4 2 1


Figure 1: Example of a sparse, 3× 4 term–document matrix.

version of the inner product.)
Unfortunately, this simple model has a variety of well-known shortcomings. Most no-

tably, small differences in vocabulary (e.g. car instead of automobile) can make documents
look different from queries, even if their topics are overlapping. LSA attempts to address
this problem through compression and noise reduction. Specifically, LSA uses matrix trans-
formations to retain only the most significant portions of B, and then performs queries in
this transformed space.

More formally, LSA is constructed around the singular value decomposition (SVD) of
B,

B = UΣV T ,

where U and V are orthogonal matrices and Σ is diagonal and non-negative. The diagonal
values of Σ are ordered to be non-increasing. In LSA, the matrix is approximated by a
truncated SVD in which the first k diagonal values of Σ are retained, but the rest are set
to zero. That is,

B ≈ Bk = UkΣkV
T
k ,

where Uk is t × k, Σk is k × k and Vk is d × k. The truncated SVD is the best rank k
approximation to B in the Frobenius norm.

The truncated SVD can be thought of as generating a k-dimensional embedding of the
terms and documents. However, it is important to note that the term coordinates and
the document coordinates are distinct entities. The notation in the field is inconsistent
with respect to the scaling factors, but we choose to define the columns of Σ1/2

k V T
k as the

document vectors and Σ1/2
k UT

k as the term vectors.
With the truncated SVD approximation to B, the inner-products required for document-

document similarities can now be approximated as BT B ≈ BT
k Bk = (Σ1/2

k V T
k )T Σk(Σ

1/2
k V T

k ),
that is, as the inner product of document vectors, scaled by Σk.

Given a query vector q, we want to embed q into the document space in such a way that
inner products with document vectors approximate BT q. It is straightforward to see that
this is achieved by letting the transformed query vector q̂ be Σ1/2

k UT
k q, with a standard,

unscaled inner product. (N.B. Alternatively, we could have used an inner product scaled
by Σk as for document-document comparisons, in which case q̂ would be Σ−1/2

k UT
k q. Both

approaches lead to interpretation challenges since either the scaling of queries differs from
that of documents, or the inner product differs for different kinds of questions.)

These procedures are summarized in Figure 2.
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LSA document embedding:
Given scaled term–document matrix B.
(1) Compute truncated SVD of B, UkΣkV

T
k .

(2) Assign the position of document i to be Σ1/2
k V T

k ei.

Querying:
Given document embedding, and query vector q.
(1) Compute query location = Σ1/2

k UT
k q.

(2) Return documents nearest to query point (nearest in angular distance).

Figure 2: LSA algorithms for term/document embeddings and querying.

3 Graphs, Laplacian Eigenvectors, and Fiedler Retrieval

As sketched above in §2, the traditional derivation of LSA is based upon optimal matrix
approximations. But informally, the method succeeds in mapping documents into geometric
space in such a way that similar documents are close to each other. In this section, we pick
up on this geometric closeness objective and develop an alternative algebraic method that
explicitly tries to optimize closeness. For reasons that will be clear at the end of this section,
we will call our approach Fiedler retrieval. In §4, we discuss the mathematical relationship
between traditional LSA and our methodology.

Our approach begins with a graph G = (V,E) in which V is a set of vertices and E is a set
of vertex pairs known as edges. An edge (i, j) connecting vertices i and j has a non-negative
weight wi,j which describes how similar the two vertices are. Larger weights correspond to
a greater degree of similarity or affinity. The vertices may represent several different classes
of objects. For instance, in §4 we will look at the special case where the vertices are terms
and documents, and the similarities are entries of the scaled term–document matrix B But
for now, we will consider the more abstract and general problem. We will assume that the
graph is connected — that for any two vertices there is a path connecting them.

Our goal is to place the vertices of the graph into a low-dimensional geometric space in
such a way that similar vertices are close to each other (i.e., edge lengths will be short).
Geometric embeddings of graphs can be useful for a variety of reasons, but for the purposes
of this paper, our eventual goal is the same of the goals of LSA. We hope to use geometric
proximity as a way to identify vertices that are similar to each other, even if they don’t
have an edge between them.

The geometric embedding problem can be posed as an algebraic minimization. There
are many ways to mathematically describe such an embedding, but one will be particularly
useful. Specifically, we choose to find points in a k-dimensional space that minimize the
weighted sum of the square of edge lengths. That is, if pr is the location of vertex r, then

Minimize
∑

(r,s)∈E

wr,s|pr − ps|2.

If the number of vertices is n, and the geometric space has dimensionality k, then the
positions of the vertices can be considered to be an n × k matrix X. Define the Laplacian
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matrix L as follows.

L(i, j) =


−wi,j if eij ∈ E∑

k wi,k if i = j
0 Otherwise.

That is, the Laplacian is the negative of the matrix of weights, except that the diagonal
values are chosen to make row-sums zero. Note that L is symmetric and positive semi-
definite. After a bit of algebra, our minimization problem can be rewritten as

X = argmin Trace(XT LX). (1)

This minimization problem is poorly posed for three reasons. First, it is invariant under
translations. To avoid this problem we can add a constraint to make the median of the point
set be the origin. For generality, we will allow different vertices to be weighted differently.
For instance, a vertex representing a document might be weighted differently from a vertex
representing a term. We allow this flexibility by including a positive diagonal weighting
matrix D in our normalization. That is,

(Constraint 1) for i = 1, . . . , k XT
i D1n = 0 (2)

where 1n denotes the vector of n ones.
Second, even with this constraint the minimization problem has the trivial solution of

placing all the vertices at the origin. To avoid this, we can simply insist that the weighted
sum of squares of each coordinate value is nonzero. That is,

(Constraint 2) for i = 1, . . . , k XT
i DXi = δi (3)

for some positive values δi. Without loss of generality, we will choose to order the axes so
that the δi values are non-increasing. We will have more to say about these values when we
compare Fiedler retrieval to LSA in §4.

Finally, we want to ensure that each coordinate conveys distinct information. We accom-
plish this by imposing the constraint that the vector of coordinate values in each dimension
is orthogonal to the coordinate values from any other dimension. Again, we allow for
different vertices to be weighted differently.

(Constraint 3) for i 6= j XT
i DXj = 0. (4)

Denoting the diagonal matrix of δ values by ∆, we can combine constraints 2 and 3,
resulting in the following optimization problem.

X = argmin Trace(XT LX) (5)
Subject to :

(i) XT
i D1n = 0 for i = 1 . . . k,

(ii) XT DX = ∆

Consider the generalized eigenproblem Ly = λDy. L is positive semi-definite, and it
has a generalized eigenvector proportional to 1n with eigenvalue 0. If, as we assume, the
graph is connected, then all other generalized eigenvalues are positive [11, 12]. Sort these
generalized eigenvalues λi in non-decreasing order, and form the matrix Λ = diag(λi). Order
the corresponding eigenvectors qi in the same way and combine them to form a matrix Q.
It follows from elementary properties of the generalized eigenproblem that L = DQΛQT D,
and QT DQ = I. Let Q̃k denote the matrix [q2, . . . , qk+1].
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Theorem 3.1 A solution to the minimization problem (5) is X = Q̃k∆1/2.

Proof:
Let X = QZ for some n× k matrix Z. The constrained minimization problem in 5 can

now be rewritten as

Z = argmin Trace(ZT QT LQZ) = Trace(ZT ΛZ) (6)
Subject to :

(i) ZT QT D1n = 0
(ii) ZT Z = ∆

Since q1 = 1n, constraint (i) of Eq. (6) can be simplified to become 0 = ZT QT Dq1 =
ZT e1. Thus, the first row of Z is zero.

A solution to (6) should involve only the smallest of the eigenvalues, which are those in
the leading diagonal entries of Λ. Since ZT e1 = 0, a solution can be found in the span of
the unit vectors e2, . . . , ek+1.

To minimize the trace, we now need to have large values of δi be paired with small
values of λi. Recall that the λi are non-decreasing, while the δi are non-increasing. Thus,
the trace is minimized by having the nonzero portion of Z be the identity matrix. That is,
Z = [e2, . . . , ek+1]. The theorem follows.

Note that if ∆ or Λ have repeated values, then the solution to (5) is degenerate and any
basis for the subspace spanned by eigenvectors corresponding to repeated values is also a
minimizer.

Theorem 3.1 says that a solution to the geometric optimization problem is found when
the coordinates of vertex i are the ith entries of generalized eigenvectors q2, . . . , qk+1 of
Ly = λDy, scaled by the square roots of the normalization values δ. We will call this
solution a Fiedler embedding in honor of Miroslav Fiedler’s pioneering work exploring the
relationship between graphs and Laplacian eigenvectors.

3.1 Queries

Once we have embedded the graph in space, we can use geometry to identify pairs of
similar vertices. Two vertices might not have an edge between them, but they might still
be similar if they have many neighbors in common. Since the Fiedler embedding tries to
keep edge lengths short, vertices sharing neighbors should be placed close to each other.
So given a vertex, its geometrically nearest neighbors are natural candidates for similarity.
In this discussion, Euclidean distance is the most natural metric, but as noted above, LSA
traditionally uses angular distance, measured by direction cosines.

Now suppose we want to add a new vertex v to the geometric space, and v is known
to be similar to some of the vertices we have already placed. In the language of LSA, this
new vertex corresponds to a query and its known similarity values comprise a query vector.
Once v is given coordinates, we could use geometric algorithms to find nearby vertices, and
these would be the output of the query.

As with the derivation of the Fiedler embedding, we wish to place v into the space in
such a way that it is near to vertices it is known to be similar to. Mimicking the development
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above, we will position the new vertex to minimize the (weighted) sum of squares of distances
to the vertices it has an edge to. That is, we wish to find a position pv which solves

pv = argmin
∑

(s,v)∈E

ws,v|ps − pv|2.

Setting the derivative to zero, it is easy to see that the solution to this problem is

pv =
∑

(s,v)∈E

ws,vps/
∑

(s,v)∈E

ws,v = ∆1/2Q̃T
k q/||q||1.

where q is the vector of similarity values for the new vertex (values of w in the derivation
above).

To summarize, the Fiedler retrieval processes for constructing coordinates and querying
are sketched in Figure 3.

Fiedler Embedding:
Given W a set of non-negative affinities for vertex pairs,

∆ a diagonal, non-negative matrix of scalings for each coordinate,
and D a diagonal, non-negative matrix of normalization values for each vertex.

(1) Generate Laplacian matrix L from W .
(2) Compute k + 1 generalized eigenvectors qj corresponding to the

smallest generalized eigenvalues of Lx = λDx.
(3) Let Q̃k = [q2, . . . , qk+1].
(4) Assign the position of vertex i to be ∆1/2Q̃T

k ei.

Querying:
Given Fiedler embedding, and new entity with affinity/query vector q.
(1) Compute query location = ∆1/2Q̃T

k q/||q||1.
(2) Return vertices nearest to query point (nearest in Euclidean distance).

Figure 3: Fiedler retrieval algorithm for graph embedding and querying.

4 Relationship Between LSA and Fiedler Retrieval

Our Fiedler retrieval algorithm was derived as the solution to a geometric minimization
problem, and involves generalized eigenvectors of a Laplacian system. Latent Semantic
Analysis is the solution to an optimal matrix approximation problem, and revolves around
singular values and vectors. Despite these differences, a comparison of Figures (2) and (3),
suggests a high degree of structural similarity between these two methods. In this section,
we show that they are actually quite closely related. In particular, we show that for certain
choices of the free parameters, the algebraic/geometric spaces employed by the two methods
are related to each other by simple scalings.

Figures (2) and (3) reveal three distinct differences between LSA and Fiedler retrieval.
First, in LSA the embedding and query operations involve scaling by the square root of the
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singular values, while in Fiedler retrieval they are scaled by the square root of the δi values.
As the δi values were free parameters in Fiedler retrieval, they could be chosen to match
the singular values from LSA, so this difference is insignificant.

Second, the location of a query point in Fiedler retrieval involves scaling by the 1–norm
of the query vector, but no such scaling appears in LSA. Normalization doesn’t matter in
LSA since distances are measured in terms of direction cosines. But the normalization does
have an impact in Fiedler retrieval since it uses Euclidean distances.

Third, and most important, the methods use seemingly quite different algebraic spaces.
LSA uses singular vectors corresponding to large singular values of the scaled term–document
matrix. But Fiedler retrieval uses generalized eigenvectors corresponding to small eigenval-
ues of the Laplacian matrix. In the remainder of this section, we show that these spaces
are actually quite closely related.

LSA is concerned with terms and documents, while our discussion of Fiedler retrieval
discussed general entities and similarities. Consider applying Fiedler retrieval to a set of
documents and terms. Terms will have an affinity for the documents that contain them,
and vice versa. That is, a scaled term–document matrix can be thought of as encoding
the similarity values between term and document entities. With this interpretation, the
term–document matrix from Fig. 1 can be described as a weighted graph as depicted in
Fig. 4. Note that this graph has a bipartite structure; that is, no edges connect terms to
terms or documents to documents.

Figure 4: Graph corresponding to the term–document matrix from Fig. 1.

The Laplacian matrix corresponding to this bipartite graph is shown in Fig. 5. Note
that it is square, with a row and column for each term and document. Note further that
the diagonal blocks have no off–diagonal nonzeros since there are no document-document or
term-term edges in the graph. The horizontal and vertical lines in the figure demarcate this
block structure. The off-diagonal blocks are just the negative of the scaled term–document
matrix B. That is,

L =
(

D1 −B
−BT D2

)
,

where D1 and D2 are diagonal matrices which make the row sums zero.
Fiedler retrieval makes use of generalized eigenvectors corresponding to small eigenvalues

of the system Lx = λDx, where D was unspecified. To compare with LSA, we now choose
to make D equal to the diagonal of L. The generalized eigenproblem underlying Fiedler
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6 −2 −4
6 −3 −3

7 −4 −2 −1
−2 −3 5

−4 4
−3 −2 5

−4 −1 5


Figure 5: Laplacian matrix corresponding to the term–document matrix from Fig. 1.

retrieval can now be written as follows.[
D1 −B
−BT D2

] [
x1

x2

]
= λ

[
D1 0
0 D2

] [
x1

x2

]
With a bit of simple algebra mirroring the derivation in [10], this can be rewritten as

Bx2 = (1− λ)D1x1

BT x1 = (1− λ)D2x2

Substituting y1 = D
1/2
1 x1 and y2 = D

1/2
2 x2, we find that

D
−1/2
1 BD

−1/2
2 y2 = (1− λ)y1

D
−1/2
2 BT D

−1/2
1 y1 = (1− λ)y2

These equations define the singular value decomposition of D
−1/2
1 BD

−1/2
2 . That is, y1

and y2 are the left and right singular vectors respectively with singular value (1−λ). More
formally, we have the following result.

Theorem 4.1 Let Laplacian be a Laplacian matrix

L =
(

D1 −B
−BT D2

)
, (7)

where D1 and D2 are diagonal and let D be the diagonal of L. If (u, v, 1− λ) is a singular
triplet of D

−1/2
1 BD

−1/2
2 , then (D−1/2

1 u : D
−1/2
2 v, λ) is a singular pair of the generalized

eigensystem Lx = λDx, where a : b denotes concatenation of a and b.

This theorem indicates that there is a close relationship between the eigenvectors in
Fiedler retrieval and the singular vectors of LSA. Specifically, a scaling of the eigenvectors
is equivalent to performing LSA on a scaled matrix. Note that the singular values are (1−λ)
while the eigenvalues are λ. Thus, large singular vectors correspond to small eigenvectors.
So the spaces used by LSA and Fiedler retrieval are closely connected.

If Dt and Dd, the scaling matrices from §2, are chosen so that B has constant row
sums and constant column sums (i.e. Sinkhorn scaling), then D1 and D2 become multiples
of identity matrices. In this case, the relationship between the spaces used by the two
approaches is even simpler.
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Corollary 4.2 Let B from Theorem 4.1 have constant row sums and constant column
sums so that D1 = α2I and D2 = β2I. Then if (u, v, 1 − λ) is a singular triplet of
diag(α−1)B diag(β−1), then (α−1u : β−1v, λ) is a singular pair of the generalized eigen-
system Lx = λDx.

The computation time for the two approaches is also very similar. For large, highly
unstructured matrices, iterative algorithms are likely to be the methods of choice for singular
and eigenvector computations. Iterative algorithms for computing the SVD, like those in
Berry’s SVDPACK [7], require a multiplication by both B and BT in each iteration. An
iterative method, like those in ARPACK [16] for the larger eigenproblem in Fiedler retrieval
will also involve these two matrix products. If the diagonal blocks are diagonal, then the
additional work per iteration is linear in the problem size. Effective preconditioning will be
important for both approaches, and the Fiedler retrieval approach may be able to benefit
from sophisticated methods for preconditioning Laplacians like algebraic multigrid [20] and
support theory [19].

5 Advantages of Fiedler Retrieval

As discussed in §4, Fiedler retrieval can be viewed as a close cousin to traditional LSA.
We believe it provides several distinct advantages over traditional LSA formulations. It
provides a simple and intuitive way to explain the power of LSA. But it also has some more
concrete advantages.

• The Fiedler embedding is an explicit attempt to place similar objects near to each
other. This objective is often alluded to in the LSA literature, but with traditional
presentations of LSA the mathematical underpinnings of nearness are opaque.

• Unlike traditional LSA, in Fiedler retrieval terms and documents are treated equiva-
lently and co-located in the same space. This refutes a claim made by Deerwester, et
al. in the foundational LSA paper [9]. “... it is not possible to make a single config-
uration of points in space that will allow both between [term/document] and within
[term/term] comparisons.” As itemized below, this unification creates opportunities
for several extensions to traditional LSA.

– Fiedler retrieval supports queries that include both term and document similar-
ities. For example, one could search for documents similar to a few particular
documents and a few specific terms. These kinds or cross-queries are problematic
for traditional LSA.

– In the standard development of LSA it is assumed that the only usable informa-
tion is term/document connections. LSA does not naturally allow for inclusion
of any additional information related to term/term or document/document sim-
ilarities. However, nothing in the derivation of the Fiedler retrieval algorithm
from §3 exploited the bipartite nature of the graph. That is, the diagonal blocks
of the Laplacian matrix need not be diagonal matrices. We could have explic-
itly added information about document/document or term/term similarities into
our construction of the geometric embedding. For instance, citation analysis
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or hyperlinks could have provided document/document similarities and a the-
saurus or (multilingual) dictionary could have offered term/term similarities. In
a web setting, link and text analysis can be combined into a common algebraic
framework. In a recommender system, product/product similarities could be
included, enhancing current methods that just include consumer/product infor-
mation. Fiedler retrieval allows for a principled inclusion of such information.

– LSA is traditionally constrained to capturing the relationships between two
classes of objects, e.g. terms and documents. It is unclear how to extend the
standard methodology to more object classes, e.g. terms, documents and au-
thors. Fiedler retrieval is not limited in this way. The Laplacian matrix will
have a logical block structure, with as many block-rows and block-columns as
object classes. That is, the rows and columns of the matrix will have entries for
terms, documents and authors. The diagonal blocks will capture similarities be-
tween objects of the same type (e.g. authors with authors), while the off-diagonal
blocks will encode similarities between disparate types. Several researchers have
recently addressed the challenge of multiple classes of objects by extending the
term–document matrix to higher dimension and using multilinear algebra tech-
niques (e.g. the TOPHITS approach of Kolda and Bader [15]). Although these
approaches are mathematically elegant, computations on tensors are much more
challenging than those on matrices. With Fiedler retrieval, we obtain many of the
advantages of tensors, while retaining the algorithmic and mathematical benefits
of working with two-dimensional matrices.
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